A primal-dual symmetric relaxation for homogeneous conic systems
نویسندگان
چکیده
We address the feasibility (existence of non-trivial solutions) of the pair of alternative conic systems of constraints
منابع مشابه
A Primal Barrier Function Phase I Algorithm for Nonsymmetric Conic Optimization Problems
We call a positive semidefinite matrix whose elements are nonnegative a doubly nonnegative matrix, and the set of those matrices the doubly nonnegative cone (DNN cone). The DNN cone is not symmetric but can be represented as the projection of a symmetric cone embedded in a higher dimension. In [16], the authors demonstrated the efficiency of the DNN relaxation using the symmetric cone represent...
متن کاملA polynomial primal-dual affine scaling algorithm for symmetric conic optimization
The primal-dual Dikin-type affine scaling method was originally proposed for linear optimization and then extended to semidefinite optimization. Here, the method is generalized to symmetric conic optimization using the notion of Euclidean Jordan algebras. The method starts with an interior feasible but not necessarily centered primal-dual solution, and it features both centering and reducing th...
متن کاملGeneralization of Primal-Dual Interior-Point Methods to Convex Optimization Problems in Conic Form
We generalize primal-dual interior-point methods for linear programming problems to the convex optimization problems in conic form. Previously, the most comprehensive theory of symmetric primal-dual interior-point algorithms was given by Nesterov and Todd 8, 9] for the feasible regions expressed as the intersection of a symmetric cone with an aane subspace. In our setting, we allow an arbitrary...
متن کاملThe Primal-Dual Second-Order Cone Approximations Algorithm for Symmetric Cone Programming
This paper presents the new concept of second-order cone approximations for convex conic programming. Given any open convex cone K, a logarithmically homogeneous self-concordant barrier for K and any positive real number r ≤ 1, we associate, with each direction x ∈ K, a second-order cone K̂r(x) containing K. We show that K is the intersection of the second-order cones K̂r(x), as x ranges through ...
متن کاملSolving Conic Optimization Problems via Self-Dual Embedding and Facial Reduction: A Unified Approach
We establish connections between the facial reduction algorithm of Borwein and Wolkowicz and the self-dual homogeneous model of Goldman and Tucker when applied to conic optimization problems. Specifically, we show the self-dual homogeneous model returns facial reduction certificates when it fails to return a primal-dual optimal solution or a certificate of infeasibility. Using this observation,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Complexity
دوره 23 شماره
صفحات -
تاریخ انتشار 2007